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We consider the problem of determining linear acoustic properties of bubbly liquids 
near the natural frequency of the bubbles. Since the effective wavelength and 
attenuation length are of the same order of magnitude as the size of the bubbles, we 
devise a numerical scheme to determine these quantities by solving exactly the multiple 
scattering problem among many interacting bubbles. It is shown that the phase speed 
and attenuation are finite at natural frequency even in the absence of damping due to 
viscous, thermal, nonlinear, and liquid compressibility effects, thus validating a recent 
theory (Sangani 1991). The results from the numerical scheme are in good agreement 
with the theory but considerably higher than the experimental values for frequencies 
greater than the natural frequency. The discrepancy with experiments remains even 
after accounting for the effect of polydispersity, finite liquid compressibility, and non- 
adiabatic thermal changes. 

1. Introduction 
The problem of small-amplitude acoustic wave propagation through bubbly liquids 

has been examined previously by a number of investigators (Foldy 1945; Carstensen 
& Foldy 1947 ; van Wijngaarden 1972 ; Caflisch et al. 1985 a, b; Sangani 199 1). When 
the volume fraction p of gas bubbles is small compared to unity, the speed and 
attenuation of acoustic waves can be determined to leading order by examining the 
interaction of a single bubble with the wave. This was done by Foldy (1945) who 
showed that the effective wavenumber non-dimensionalized by the radius of the 
bubbles is given by 

z2 = z;+ 3 P 4  
1 -w,2(1-ib)' 

The speed of sound C,, in the medium is related to the effective wavenumber by 
C,, = wR/z ,  where w is the frequency of the wave and R the radius of the bubbles. In 
(l), z ,  is the non-dimensional wavenumber based on the speed of sound in pure liquid, 
i.e. z ,  = URIC,, C, being the speed in pure liquid, and w, the non-dimensional 
frequency, i.e. w, = w/w, ,  w,  being the natural (resonance) frequency of bubbles 
approximately given by 

Here, y is the ratio of constant pressure and constant volume specific heats of the gas, 
pL the density of the liquid, and P, the pressure inside the gas bubbles in the absence 
of wave propagation. Finally, b in (1) is a damping parameter whose magnitude 

w: = 3yPe/p,  R2.  (2) 



240 A .  S.  Sangani and R. Sureshkumar 

depends on a number of variables including the viscosity and compressibility of the 
medium and the thermal properties of the gas (see Commander & Prosperetti 1989, and 
Sangani 1991, for details). The finite viscosity and non-adiabatic thermal changes are 
the two principal mechanisms contributing to damping at small frequencies. In 
addition, damping also occurs due to the finite compressibility of the liquid, which is 
generally significant at higher frequencies. The pressure disturbance created by the 
presence of a bubble corresponds to an outgoing scattered wave (e-ikL‘/r) in the 
compressible medium and this consequently gives rise to the damping known as the 
acoustic radiation damping, which in Foldy’s theory is given by (Commander & 
Prosperetti 1989) 

Here, k ,  is the dimensional wavenumber, i.e. k ,  = z L / R .  
The attenuation predicted by Foldy’s theory has been compared with the 

experimental data reported by several investigators in Commander & Prosperetti 
(1989). It was found that while the agreement between the theory and experiments was 
generally good at ,!? < 0.001, a substantial discrepancy exists for larger p and for 
frequencies close to and above the natural frequency of the bubbles. 

The higher-order corrections to (1) were recently determined by Sangani (1991) who 
allowed for the interaction among pairs of bubbles. A comparison of this new theory 
with the experimental data on the attenuation of sound waves reported by Silberman 
(1957) showed an excellent agreement between the theory and experiments for 
frequencies smaller than or comparable to the natural frequency of the bubbles, but a 
poor agreement at higher frequencies. For example, the theory predicted an attenuation 
of 1.3 dB/cm for bubbles of radii 0.26 cm (natural frequency 1.4 kHz) at 1 kHz 
frequency and /3 = 0.01, which is in perfect agreement with the measured value 
reported by Silberman (1957). This may be compared with the Foldy theory which 
predicts an attenuation of only 0.27 dB/cm. On the other hand, the attenuation 
predicted from the higher-order theory by Sangani is more than twice the experimental 
value at 7 kHz. This is somewhat surprising since one may expect the interaction effects 
to become relatively unimportant for frequencies not too close to the resonance 
frequencies, especially when ,!? is as small as 0.01. It may be added here that the 
attenuation values predicted by Sangani’s theory and thus the higher-order corrections 
in ,d actually increase the discrepancy between theory and experiments at higher 
frequencies. The purpose of the present study therefore is to determine the attenuation 
of sound waves for random dispersions of gas bubbles in a liquid via direct numerical 
simulations of the interactions among bubbles to test the theory and to investigate 
further the reasons for the discrepancy between theory and experiments. Furthermore, 
as explained in more detail in $2, there were some implicit assumptions made in the 
higher-order theory by Sangani, and these could be most easily tested through direct 
numerical simulations. 

The organization of this paper is as follows. In $2, we give a brief summary of the 
important findings of the theory by Sangani and some qualitative differences between 
that and Foldy’s theory. In $3, we present numerical schemes for determining the 
effective wavenumber in non-dilute bubbly liquids, and, in §4, we compare the results 
of numerical simulation with various theories and experiments. 

b, = z,. (3 1 
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2. Background 
Sangani (1991) determined the higher-order corrections to (1) when /3 is small 

compared to unity but large compared to zr ,  w, being O( 1). The ratio of the two terms 
on the right-hand side of (1) with the damping parameter set to zero is 

3/34 P L G  1 
Z:(l-w:) = yPe 1-w;  (4) 

For an air-water system at atmospheric pressure, pL C:/yP, - lo4, and, therefore, his 
theory is expected to apply when /3% lo-* and w," 4 104/3. In this limit, the 
compressibility of the overall medium is determined primarily by the amount of 
bubbles and the liquid may be regarded as incompressible. Substituting zL = 0 in ( l ) ,  
we see that the effective wavenumber z is O(@) in this limit. 

Sangani showed that the first correction to (1) is of O P )  : 

where b* = b-b, with b, given by (3). Thus, only the viscous and thermal effects 
contribute to b*. Actually, accounting for the thermal effects also changes the natural 
frequency of the bubbles. The quantities b* and w,  are thus to be evaluated from 
(Prosperetti 1984) 

4P pe=% b* = b,+b, G -+- 
pL R'W pL R2w2' 

(7) 

where b, and b, are, respectively, the viscous and thermal dampings, p is the viscosity 
of the liquid, (T is the interfacial tension, and XR and are, respectively, the real and 
imaginary parts of the complex quantity 

(8) S = 3y[l-3(y- 1) ia*{(i/a*)i coth (i/a*)i- l}]-', a* = - a G  
wR2'  

Here, a, is the thermal diffusivity of the gas. 
The expression ( 5 )  diverges at w,  = 1 and, hence, it is not suitable for evaluating z 

in the vicinity of the natural frequency. Sangani therefore rearranged it in the different 
form given by 

3 / 3 4  z2 = z;+ 
1 -wf(l -i(b*+z))' (9) 

The two expressions for z ,  as given by ( 5 )  and (9), are the same to O(@) (provided that 
z t  4 p % 1) but the estimates obtained from them for finite /3 can differ considerably 
depending on the magnitudes of w, and b*. Comparing now Foldy's expression (1) with 
the expression (9) obtained by Sangani, we see that the main difference between the two 
is in the estimate of the acoustic radiation damping : in Foldy's theory b = b* + zL, and 
in Sangani's theory b = b* + z .  This difference is due to a very simple reason. In the 
O(p) Foldy's theory, the bubbles undergo volume oscillations due to pressure changes 
in the pure liquid and, thus, it is the compressibility of the liquid that is important, 
while at small but finite /3 the overall compressibility of the mixture is governed by the 
amount of bubbles. Thus, bubbles undergo volume oscillations not in pure liquid but 
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in a medium that has a much higher compressibility. Sangani also determined the 
O(j3210g/3) and O(p2) corrections to (5 ) ,  but for now we shall focus on the 
consequences of the O(@) theory as given by (9). 

Consider first the case w, < 1. We shall take /3 to be comparable to lop2. If we further 
take b* = 0 and zL = 0, then z predicted from (1) is real, and the attenuation, which 
is related to the imaginary part of z, is zero. On the other hand, z computed from (9) 
is complex and hence there is a finite attenuation even when the damping due to 
viscous, thermal, and liquid compressibility is taken to be zero. The real part of z is 
inversely proportional to the phase speed of the wave, and we see that the latter, 
according to Foldy's theory, approaches zero as w, + 1L. The phase speed computed 
from (9), on the other hand, remains finite at w, = 1 .  

The case of w, >, 1 is even more interesting. First of all, if we set b = 0 in (l), and take 
zL to be vanishingly small, then we find that z2 is a negative number indicating an 
infinite phase speed and a finite attenuation. This means that most of the sound waves 
will simply be reflected back from the region of the bubbly liquid, with the intensity of 
sound waves decreasing exponentially with the distance penetrated by the waves into 
the bubbly liquid region. This phenomenon can be understood by examining the 
response of a single bubble to the pressure fluctuations in the medium. It can be shown 
that the pressure oscillation inside the gas bubble are 180" out of phase with the 
pressure fluctuations in the liquid when w,  > 1. Thus, bubbles behave as if their 
compressibility is negative. Since the compressibility of the liquid is negligible, the 
overall apparent compressibility of the mixture is negative, and this, in turn, causes the 
attenuation of sound waves. In most cases, the attenuation due to this overall negative 
apparent compressibility is far greater in magnitude than that caused by the viscous or 
thermal effects. The latter effects only cause the phase speed to change from an infinite 
value to a finite one. For bubbles of 2 mm radius, the magnitude of this phase speed 
is generally very high, even greater than the speed in pure liquid. At sufficiently large 
frequencies, the amplitude of the pressure fluctuations in the bubble becomes 
vanishingly small and hence the apparent negative compressibility of the bubbles 
becomes nearly zero. Consequently, the liquid compressibility becomes important at 
high frequencies. This occurs when zt - 3p (cf. (1)) or, when w, - lo2 f i  for the 
air-water system at atmospheric pressure. For even higher frequencies, the bubbles 
behave essentially like rigid particles and the speed of sound in the medium becomes 
comparable to that in pure liquid. 

The predictions of the O(pi) theory (cf. (9)), on the other hand, are qualitatively 
different, at least for frequencies close to resonance. In particular, if we take 
b* = zL = 0 and w, = 1 in (9), then z3 = -3i/3, and this has three roots given by 

, I2 = 0,1,2 (0, = I). (10) 
Let us define u and v as the real and imaginary parts of the effective wavenumber z, i.e. 

z = u-1v. (1 1) 
The attenuation is then proportional to u, and we shall be interested in the solution of 
z for which both u and v are non-negative. (The derivation of (9) applied to this case.) 
This corresponds to n = 2 in (lo), i.e. 

(12) 
indicating a finite phase speed and attenuation at w, = 1. As w, is increased, the 
magnitude of u decreases up to a value of w, roughly given by w:2 = 1 -3(3/3/4)$)-l, 
beyond which z becomes purely imaginary as in Foldy's approximation. Thus, 

= (3p);i ezinn/3 

z = (3,9)i(d3 - i)/2, 



Linear acoustic properties of bubbly liquids 243 

2, 1.0 

0.5 

1.5 

I 

- 

- 

2.0 1 I I I 

1.5 

I I  

2.0 1 I I I I 

1.5 , I  
- ---------- - 

/f----- 
I / I  I I I - 

0 1 2 3 4 5 0 1 2 3 4 
W ,  0, 

FIGURE 1. A comparison of the real (u) an< imaginary (v) parts of the effective wavenumber t 
predicted by the O(p) (dashed line) and O(p)  (solid line) theories. p = 0.03, k,  = 0, and b* = 0. 

significant differences between the two theories occur in the range 1 < w, < w: in which 
the higher-order theory predicts a finite phase speed compared with the infinite speed 
predicted by Foldy's theory. For p =  0.01 and 0.03, respectively, w: equals 
approximately 1.6 and 2.6, and hence there is a significant range of values of w, where 
the two theories predict different behaviour even for relatively small values of p. These 
differences for zL = b* = 0 and /3 = 0.03 are shown in figure 1. 

The calculation of the O@') corrections to Foldy's theory requires the examination 
of interaction among pairs of bubbles. As shown in more detail in Sangani (1991), a 
pair of bubbles resonates in two different modes, one in which the two bubbles resonate 
in phase with each other, and the other in which they are out of phase by 180". If the 
non-dimensional interfacial tension is large, the pair of bubbles resonate in the in- 
phase mode at a frequency that depends on the separation between the two bubbles 
and varies from w, = 0.82 for a pair of nearly touching bubbles, to w, = 1 for widely 
separated bubbles. The out-of-phase mode resonance between pairs of bubbles with 
large interfacial tension occurs for w, > 1. A pair of touching bubbles resonates in this 
mode at w, = 00 and a pair of widely separated ones at w, = 1. Thus, in random 
dispersions, where the probability density of finding a pair of bubbles with a specified 
separation distance is finite, there are always pairs of bubbles which are resonating 
whenever w, > 0.82. As shown in Sangani (1991), this causes a logarithmic divergence 
near w, = 0.82 in the O(p2) correction to z2. 

It is important to note that the coefficient of O@) in (5) becomes very large in the 
vicinity of w, = 1. Similarly, the coefficients of O(p2 log p) and O(pz) evaluated by 
Sangani were also large, of 0(103), for w, > 0.85. All these coefficients diverge at 
w, = 1, with the higher-order coefficients diverging more strongly than the lower-order 
ones. In other words, the asymptotic series for z2 derived via dilute approximation does 
not converge for a substantial range of frequencies when /3 is finite. It may be further 
noted that, in dispersions containing many bubbles, the resonances between groups of 
three or more bubbles can also become significant, and since these resonances occur for 
an even larger range of frequencies, it is unclear how accurate the predictions of the 
dilute theories, which only examine the interaction of a single or a pair of bubbles with 
the wave, will be when /3 is finite. On the other hand, if the predictions of the modified 

I 
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O(@) theory (cf. (9)), according to which the acoustic response of bubbly liquids is 
finite even at the primary resonance frequency (wr = l), are indeed correct, then one 
would expect the resonance effects of two or more bubbles to play a relatively 
unimportant role in determining the acoustic properties of the bubbly liquids. Since the 
modified theory (9) is only one of many other ways in which the divergent series (5) can 
be recast, it is important to test it by carrying out direct numerical simulations of the 
multiple scattering problem. Indeed, implicit in rearranging the original asymptotic 
series into (9) is an assumption that z will be finite at w,  = 1 even when the thermal, 
viscous, liquid compressibility, and nonlinear effects are neglected. 

Since the wavenumber is O( 1) when p is O( l), or when the resonance effects become 
important, we devise in this paper a novel scheme for determining the interaction 
among bubbles in which the smallness of z is not assumed, as is typically the case with 
most dilute theories. The results of numerical simulations verify the predictions of 
O(@) theory (cf. (12)) at w, = 1 and small p. The departure of numerical simulation 
results from the theory, however, becomes significant at p = 0.01, where the exact 
results deviate from theory by a factor of 2. Thus, the higher-order interactions are 
significant even for /3 as small as 0.01. The agreement between theory and simulations 
is much better for larger frequencies, and we find that both the theory and simulations 
results for attenuations are higher than those predicted from Foldy's theory, which, in 
turn, are higher than the experimental values reported by Silberman (1957). We have 
investigated the effects of finite compressibility of the liquid and polydispersity, in 
addition to the multi-bubble interactions via numerical simulations, but none of these 
factors reduces the gap between theory and experiments. 

3. Formulation of the problem and the method of solution 
As discussed in the previous sections, there are two main objectives of the present 

study. The first is to test the validity of the dilute theories due to Foldy and Sangani, 
and for this purpose we shall restrict our attention to the case b* = 0 for which the 
differences in the prediction of the two theories are most significant, particularly near 
w,  = 1. The case b* = 0 corresponds to no thermal or viscous damping. The second 
objective is to examine the reason for the discrepancy between the theory predictions 
and the experimental data on attenuation of sound waves by Silberman (1957) which 
were carried out for bubbles with approximate radius of 0.26 cm and for p = 0.01. As 
noted in Sangani (1991), the thermal damping is significant for this size of bubbles, and 
therefore we should account for the thermal effects in comparing the results of 
numerical simulations with the experiments. The viscous effects are negligible for these 
experimental conditions. Finally, the finite compressibility of the liquid may also 
become important at large frequencies, and therefore our numerical simulations should 
allow for it also. This will be particularly important at the larger frequencies where the 
thermal and viscous effects generally become unimportant and where a substantial 
discrepancy between theory and experiments exists. It may be noted that the theory of 
Sangani ignored liquid compressibility, thus the addition of z t  in (9) is somewhat 
arbitrary. This was added simply to have the correct leading-order behaviour for z for 
/3 --f 0 or w, +a. Thus, we shall formulate the problem accounting for both thermal and 
compressibility effects but ignore viscous effects. The special case 6" = 0 can then be 
recovered from our solution by taking the appropriate limit. There is also a slight 
advantage in keeping the compressibility of the liquid in the formulation as the long- 
range interactions are then easy to sum. The case of negligible compressibility can be 
deduced by taking the limit k, --f 0 once these interactions are properly summed. 
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FIGURE 2. A schematic of the problem. The finite bubbly region in 0 < x1 < L is assumed to 
consist of identical cubes each containing N randomly placed bubbles. 

In theories for small /3, the effective wavenumber z is taken to be small, of O(&. As 
mentioned in 92, the magnitude of the wavenumber, however, can be comparable to 
unity close to resonance frequencies even for /3 as small as 0.01. Therefore, we treat z 
as O( 1). To determine z ,  we formulate the problem in the following manner. First, we 
assume that we have a region of bubbly liquid of finite thickness L in the x,-direction 
and of infinite width in the x2- and x,-directions (cf. figure 2). This region is surrounded 
on both sides by pure liquid. Next, we assume that a planar acoustic wave is incident 
upon this bubbly region. The average pressure or velocity amplitude will, of course, 
vary with x ,  in the bubbly region, but if L is much larger than the effective wavelength 
of the wave in the bubbly region, then we expect the effective wavenumber in the bulk 
of the bubbly region, i.e. away from x, = 0, L, to become independent of the nature 
of boundary conditions imposed at x ,  = f 00. It is this behaviour in the bulk that we 
shall be mostly interested in examining. 

A commonly used procedure for formulating such problems is the method of 
homogenization (Keller 1977 ; Bensoussan, Lions & Papanicolaou 1978 ; Sanchez- 
Palencia 1980) which treats various dynamic variables as functions of two spatial 
variables, one accounting for the slow variations due to the passage of the wave and 
the other accounting for the rapid variations caused by the presence of bubbles. Using 
this method, it is then possible to define the problem to be solved for the rapid 
variations. Such a procedure was employed by Caflisch et al. (1985a, b), Rubinstein 
(1985), and Miksis & Ting (1987a, b) for determining z for dilute bubbly liquids. Since 
the effective wavelength is O(1) when is O(l ) ,  there is no clear distinction of 
lengthscales in the present case and, therefore, this method is not suitable for our 
purpose. 
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We divide the bubbly region into cubes of size h, each containing a total of N 
randomly placed bubbles. The centres of these bubbles are given by 

(13) 

with a = 1,2 ,..., N,Z = 1,2, ... N,, and m,n = 0, k 1, f 2 ,  ... k a. Here, e,,e,,  and e3 
are the unit vectors along the three coordinate axes, and N ,  = L/h. Since the viscous 
effects are neglected, the equations of motion for small-amplitude waves reduce to 

X"L - - y" + xL, xL = h[(l- 1) el +me,  + ne,], 

V2p+k2,p = 0, (14) 
where p is the amplitude of the pressure disturbance at a point x in the liquid, and k ,  
the dimensional wavenumber in pure liquid, i.e. k ,  = zL/R = w/C,. All disturbance 
quantities will be assumed to depend on time as eiWt. The boundary conditions for p on 
the surface of each bubble are derived in Sangani (1991). He expanded p near the 
surface of each bubble in terms of Legendre polynomials as 

m n  

P = C C [pnm(r)  cos m$ +P"n,m(r) sin m$I P ~ ( C O S  e), (1 5 )  
n=o m=o 

where r ,  8, and $ are measured with respect to the centre of the bubble. If the viscous 
and thermal effects are neglected, the kinematic and dynamic stress conditions at the 
surface of the bubbles can be combined to give (Sangani 1991) 

where R is the radius of the bubble, CT* = v/pL R3 w2 the non-dimensional interfacial 
tension, and the prime denotes the differentiation with respect to r .  The same 
conditions also apply to pnm(r),  with Pno(r) = 0. The modification to (16) to account for 
the non-adiabatic thermal effects will be discussed later. 

In addition to the above conditions at the surface of the bubbles, we also need to 
specify the conditions at x1 = k co. We shall assume that a planar wave of unit 
magnitude is incident upon the bubbly region. Far away from the bubbly region, there 
will also be planar waves scattered from the region. Thus we have the conditions 

+F,eikLxl as x l+-m (17) 

and p+&e-ikI,xl as x p c o ,  (18) 

p --f e-ikLXi 

where F, and 4 are the amplitudes of the reflected and transmitted waves whose values 
are to be determined as a part of the solution. This completes the formulation of the 
problem. The determination of the effective wavenumber from the solution of this 
problem will be discussed later. 

To obtain the solution of the above problem, we exploit the periodicity of p in the 
plane perpendicular to the direction of wave propagation. Let G denote the 
fundamental singular solution (Green's function) of the Helmholtz equation which is 
periodic in planes perpendicular to the x,-axis, i.e. let 

(19) (V' + k:) G(x) = - 4n C S(x- RL), R ,  = h(me, + ne3), 
RL 

with m, n = 0, _+ 1, t 2 ,  .. . . To obtain unique solutions to the Helmholtz equation, we 
must also specify the correct radiation condition. In the present case, this corresponds 
to an outgoing planar wave away from the scatterers. Thus, we require that 

G(x) + ce-ikLlxll as (x,I -fa, (20) 
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where c is a constant to be determined. We therefore write 

with H+O as lxll +m, and 
G(x) = ce-ikL1”ll+H(x), 

(V2+kL)H(x) = - 4 n x  S(x-R,)+2ik,cS(lxll). 
RL 

We further impose the condition that the average of H on any plane perpendicular to 
the x,-axis be zero. This requires that the integration of the right-hand side of (22) on 
the plane x1 = 0 be zero or 

The expressions for evaluating H are given in Appendix A, where it is shown that H 
decays exponentially with (xl( within a distance comparable to h (cf. (A 2)). Thus, H 
represents the short-range effect of the point scatterers on the lattice. The other part 
of G ,  i.e. ce-ikL(xll, represents the long-range effect since k ,  is usually small and real. 

Now an expression for p can be obtained by the method of multipole expansions. 
The basic idea is that since the derivatives of G are also solutions of the Helmholtz 
equation, and since the governing equations are linear, a general solution for p is a 
linear combination of these derivatives. In the present case, we have a total of N x N ,  
doubly periodic lattices of bubbles and the response of each of them can be 
superimposed. Thus, we write 

c = 2x/ikL h2. (23) 

(24) 

and pkm are the unknown coefficients to be 

p(x)  = e -ik L x 1 + x [A;; grim +em grim] G(x - x:’), 

where the summation is over a (1 to N ) ,  l(1 to N J ,  n (0 to a), and m (0 to n) ,  and 

determined from the boundary conditions, and are referred to as the strengths of the 
2”-multipoles. grim and grim are the differential operators related to the solid spherical 
harmonics Y z  and fz by 

xac - - xy’e, = ( y ; + ( l - - l ) h ) e , .  

where Y p  and f p  are given by 

Yp(xl, x2, x,) = rn PF(cos 0) cos mr$, fp(xl,  x2, x,) = rn P;(cos 8) sin rn4, (26) 

It may be noted that the transmitted and reflected wave coefficients (cf. (17) and 
with x1 = r cos 0, x2 = r sin B cos +, and xg = r sin 8 sin r$. 

(18)), if required, can be evaluated from the strengths of multipoles by means of 

4 = c A:\( - ik,)n eik~zf, F, = c Ai\(ikL)n e-ikLxyL, (27) 
where we have made use of the behaviour of G at x1 = k cx) (cf. (20)) and of the 
relations 

9 nm eikLz1 = (ikL)nSlnOeikL”l, & nm eikLzi = 0. (28) 

The expression (24) for p is valid at all points in the liquid. To determine the 
unknowns A;;, it is convenient to express p near the surface of each bubble as given 
by (15) with pnm(r) written as a sum of singular and regular (at r = 0) spherical Bessel 
functions of degree n. There are three different singular spherical Bessel functions for 
each n, and we must choose the one that corresponds to the singular behaviour of G 
near r = 0. As shown in Appendix A, this behaviour corresponds to a standing wave, 
i.e. G + cos kLr/r = - k,y,(kL r ) .  We therefore choose pnm(r) to be given by 

Pnm(r )  = Cnmjn(kL r> +En, y n ( k L  r ) ,  (29) 
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where j n  and yn  are the spherical Bessel functions of first and second kinds, respectively 
(Abramowitz & Stegun 1972). It may be noted that this expression for pnm is different 
from the one employed by Sangani (1991) who used the spherical Bessel functions of 
the third kind (h,) instead of the second kind (y,). In that problem, the conditionally 
averaged pressure field consisted of a sum of a mean planar wave and an outgoing 
spherical wave from the surface of the bubble. In numerical simulations, we need to 
impose periodicity, and this forces the singular behaviour near the lattice points to be 
that corresponding to a standing wave. Of course, far from any plane of bubbles, G still 
has a behaviour corresponding to an outgoing planar wave and thus the radiation 
condition at infinity is satisfied. Actually, as explained in Appendix A, the imposed 
periodicity in the plane transverse to the wave propagation does pose some problems 
in modelling the behaviour of truly random dispersions. This is so because the solution 
of (1 9 )  in the limit k ,  h +co is not well behaved owing to the resonance effects of the 
period lattices. Since h+oo as N-tcc  for a given 1, the influence of the imposed 
periodicity would be particularly severe for a sufficiently large N .  The simulations in 
the present study are carried out, however, only for N < 200, and k ,h  for these 
simulations is small enough not to cause the resonance of the lattice. Moreover, a 
major portion of the results presented here is concerned with assessing the dilute theory 
which was carried out for k ,  = 0, and for this purpose it is appropriate to take the limit 
k ,  h -f 0 before taking the limit N - t  cc . 

The constants C,, and En, in (29) are different for each bubble and superscripts will 
be used to denote the particular bubbles to which they refer. The singular terms in (29) 
for the bubble al can arise only from the terms in (24) that are singular at xal. Now, 
employing a differentiation theorem from the monograph by Hobson (1931, p. 127), it 
can be shown that 

(30) 
Combining (24),  (29), and (3 ) ,  we therefore obtain 

(31)  

A similar relation applied for em and zdm. The terms in (24) that are regular at xal 
must be related to the regular terms in (29) .  Let p;' denote the regular part, i.e. let 

(32) 
where the summation is to be carried out for all y ,  j ,  r ,  and s, and G* is defined as 
G*(x - xyj)  = G(x - xY') - cos ( k ,  r ) / r  with r = Ix - xYjl for ( y , ~ ]  = (a, I ) ,  and G* = G 
otherwise. In other words, G and G* are the same except for the bubble ctl, for which 
the difference between the two corresponds to the singular part. Thus, we have 

Brim yo(kL r )  = (- kL)n yn(k ,  r )  Pp(cos 0) cos my. 

E& = (- kL)n+l A:;. 

p;' = ecilCL"1 + C [A;: Bvs + 2;: Gvs] G*(x - X Y ~ ) ,  

c o n  

pt' = C C (C;h cos m y +  e& sin mV)j,(k,r) Pp(cos 0). (33) 

Now multiplying both sides of (33) with Pp(cos 0) cos my, integrating over the surface 
of the bubble, and using an integration theorem of Hobson (1931, p. 161), we obtain 

n-0 m=O 

where 6,  = 1 for m > 0 and eo = 2. Finally, a relation between C& and EEL can be 
obtained by substituting (29) into (16), and combining it with (31) and (34),  we obtain 

t nm A:& = ~ n m P ~ ' ( X " ' ) ,  (35) 
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where t , ,  is given by 

k?+l(n + m) ! zv*(2 - n(n + 1)) y i  - y n  
2(2n + 1) (n -m)! j ,  -2v*(2 - n(n + 1))j; t,, = Em( - , n 2 1, (36) 

Yo 4 + ZY;, 
too = kL j w 2  + zj;, * 

o r  
(37) 

Here, the functions j ,  and y,, and their derivativesji and yh, are to be evaluated at 
zL = kL R. When the bubbly liquid is not monodisperse, we should replace R in the 
above expression by the radius of the bubble al. Since the compressibility of the liquid 
is small, we can use the limiting form of the above expression by substituting 
yn  = - (2n - 1) !! zin--l, j ,  = zn/(2n + 1) !! for n 2 1 and yo = - z-l,j0 = 1. In particular, 
the equation for too simplifies to 

1 -w: 
to, = - 

RW,2 

with the relative error of O(z2,). The expression for A":, can be obtained by replacing 
B,, in (35) by Grim. 

The above expressions are valid provided that viscous and thermal effects are 
negligible. As shown in Sangani (1991), the thermal effects only affect the expression 
for too because they force variations in only the spherically symmetric part (poo) of the 
pressure. Thus, to account for the thermal effects, we need to modify the expression for 
t oo  to 

1 - wf( 1 - ib,) 
RW; too = 9 (39) 

where b, is the thermal damping as given by the second term on the right-hand side of 
(6). Note that in evaluating w, = w / w c ,  we must use (7) to calculate we whenever the 
thermal effects are included in the calculations. Allowing for the viscous effects will 
modify the expressions for all t,, but, as mentioned earlier, we shall neglect viscous 
effects in the present study. These effects are most significant at low frequencies, and 
a recent study by Sangani, Zhang & Prosperetti (1991) has examined them in detail. 

Now, as noted earlier, the first term on the right-hand side of (21) represents the 
behaviour of G at large distances from the plane of singularities. It is convenient to 
separate this long-range contribution from the short-range one in the solving for A&. 
Thus, we rewrite (35) as 

(40) 

where H *  is the regular part of H a t  xa1. Since the singularities of H(x)  lie on the plane 
x1 = 0, the singular part of H equals cos k, r / r  + ic sin kJxJ (cf. Appendix A) and H *  
is obtained by subtracting this singular part from H for (a, 1) = (y, j ) .  H* decreases 
exponentially with distance from the plane of singularities, and the summation term in 
(40) therefore represents the short-range interaction effects. The long-range interaction 
part p"," is given by 

t,, A",1, = a,, ez + C [AT: gr8 + 2;; as] grim H*(x"' -A?'), 
r , s , y , i  

9 FLM 2 5 2  
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- 
t,, = [AT~ar , ,+~T~Grs]G, ,H*(x"' -x") .  (42) 

r ,  s, y i  

The set of linear equations given by (40) and (42) provides a sufficient number of 
relations for determining all the unknowns A;', and A;;. This set can be truncated to 
n d N, resulting in a total of ( N ,  + 1)2  N N ,  linear equations in an equal number of 
unknowns. Our main aim is to determine the effective wavenumber for the bulk of the 
bubbly liquid, i.e. for the region in which the end effects due to the finite width of the 
bubbly region are not important. For this purpose, we seek the solution of these 
equations in the bulk (1 + I + N,)  in the form 

7 (43) p eirx"L + ~ 2 ,  eir's;L 
nm = 

with a similar relation for 2,. According to these expressions, the multipoles of the 
bubbles in one cell are related to those in the other by a simple wave modulation. This 
particular form for the solution in the bulk has been used previously by Twersky 
(1962). T and T' are the dimensional effective wavenumbers corresponding to the 
waves travelling along the positive and negative x,-axes, and iT and iT' are complex 
conjugates. The non-dimensional effective wavenumber is given by z = u- iv = - TR. 

Substitution of (43) into (40)-(42) produces terms that are proportional to any one 
of the four terms e-ih@, eik,s;' e'rz;' and ei"z;' , of which the terms of the first two 
kinds are unimportant if our goal is only to determine the effective wavenumber in the 
bulk. Comparing the coefficients of the terms proportional to eirx?' yields the following 
set of equations (see Appendix B for details): 

t,, B",, = F; a,,, + C [qs 9Ts + ETs as] 9,, eir(u:-u;) S* W-Y'), (44) 

with = ( -ik,)" F: + (ik,)" F;, (45) 

r ,  s, y 

hay = g(Y;-Yy:), (47) 

where g(y)  is the Heavyside step function whose value is unity for y > 0, zero for 
y < 0, and one-half for y = 0. Similarly, we have 

t,, Banrn = C [qs ars + Rs as] G,, eir(uY-u;) S* w -YY). (48) 
r ,  8 ,  Y 

The function S* is related to H* by 

m 

S*(x) = 2 H*(x+lhel)epir'h. 
'=-a 

(49) 

Now (44) and (48) together constitute a homogeneous set of infinite linear equations 
in B",, and Rm. The solvability condition for a non-trivial solution to this set gives a 
necessary condition for determining the effective wavenumber T. After truncating this 
set to n 6 N,, the resulting equations can be recast into a vector relation 

Q i X j  = 0,  i = 1,2 ,... ,N(N,+ 1)2, 

in which X j  is the vector of (complex) unknowns, B",, and B;,. The solvability 
condition is that the determinant of yj must vanish. This condition, however, is 

- 
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difficult to implement numerically since the size of the matrix qj is typically very large, 
and, consequently, the determinant is difficult to evaluate. 

We use two different methods for determining r. The first is an iterative method in 
which we fix one of the unknowns, say Bto, to unity and remove the corresponding 
equation, i.e. the one corresponding to n = rn = 0 and a = 1, from the above set of 
equations. The remaining inhomogeneous set of equations can now be solved for an 
assumed value of r. Once all the unknowns are determined, their values can be 
substituted into the equation that was removed to check if the assumed value of r is 
correct. Otherwise, a different guess is chosen for r until all the equations are satisfied. 
This is a somewhat cumbersome two-dimensional search since r is complex, but 
manageable since we do not need to obtain results over a wide range of /3 and w,. 

The second method, to be referred to as the direct method, consists of solving the full 
inhomogeneous set of equations as give by (40) and (42). Since this method is not 
iterative, it can be used for larger values of N .  Once all the multipoles A",1, and 
are determined, r can be determined by a least-squares method by best fitting the 
multipoles' values to expressions such as (43) applicable for bubbles located in the bulk 
of the bubbly region. Here, by bulk we mean the region that is obtained by removing 
10 % of the bubbly liquid from either side of the bubbly region, i.e. 0.1 L < x, < 0.9 L 
(cf. figure 2). In these calculations N ,  was chosen to be unity. This method was used 
only for determining attenuation at higher frequencies (w,  > w:) for which the real part 
of r is negligibly small and r z r'. Thus, the least-square fitting is done only for one 
variable, namely the imaginary part of r. 

For testing the validity of the O(@) theory by Sangani (1991), we can set the liquid 
compressibility to zero as mentioned earlier. It can be shown that F; in (45) can be 
evaluated in the limit k,+O from 

h e i rh  

y = l  (eirh - 1) 

As shown in Appendix C, the special cases of dilute random and periodic arrays 
treated, respectively, by Foldy (1945) and Rubinstein (1985) can be derived from the 
general equations presented in this section. 

4. Results 
The method described in the previous section can be used for determining the 

attenuation and phase speed for arbitrary volume fractions. However, since our 
primary interest is in testing the validity of dilute theories, we shall present results only 
for relatively low volume fractions. Also, the attenuation of sound waves near natural 
frequencies for volume fractions greater than a few percent is so high that it becomes 
somewhat meaningless to determine it for the bulk of the bubbly region. 

4.1. Comparison with theory 

As mentioned in the Introduction, we test the validity of the theory for the simplest 
case in which the compressibility of the liquid and the viscous and thermal effects are 
neglected. In this subsection, therefore, we present results obtained with k ,  = b* = 0. 

9-2  
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FIGURE 3. The real (open circles) and imaginary (filled circles) parts of z as a function of N,, the 
highest order of singularities retained in solving the scattering problem. p = 0.01, w, = 1, and 
N = 16. 

The computer program for determining z by the iterative method was first tested for 
the special case of periodic arrays with small p for which the analysis of Rubinstein 
(1985) should apply. This corresponds to N = 1. His result with k ,  = 0 reads 

z2 = - 3p52( 1 + 1.7601pb + OP)), (52) 

where 52 = w,"/(w:- 1). The coefficient of O($) in the above expression was verified 
through numerical results for the special case 52 = 1 (w, = co). Next, calculations were 
made for N = 8 with the bubbles now placed on a lattice of half the size of the cube. 
Since the overall geometry is the same as for N = 1, the results for the two should be 
the same, and this was found to be the case. It may be noted that the bubble-interaction 
effects only cause a shift in the resonance frequency of the bubbly liquid from the 
natural frequency of the bubbles when they are arranged in a periodic array. Thus, the 
effective speed-based attenuation applies only to random dispersions. 

4.2. Results or w,  = 1 
Figure 3 shows the real and imaginary parts of z as a function of the highest order N ,  
of singularities retained in solving the multi-bubble interaction problem with /3 = 0.01 
and w, = 1, i.e. for the frequency of sound waves equal to the natural frequency of the 
bubbles. We see that, at such volume fractions, N ,  = 0 provides an accurate estimate 
of z.  More importantly, we see that the phase speed and attenuation are finite even in 
the absence of viscous, thermal, or liquid-compressibility effects. This validates the 
main assumption made in the theory of Sangani (1991), which rearranged (4) to (9). 

Figure 4 shows the real and imaginary parts of z for four different configurations of 
bubbles. The scatter among different configurations is rather small. This is interesting, 
since one would have expected large scatter at the resonance frequency. The scatter 
among the strengths of monopoles of different bubbles, i.e. KO, was also found to be 
small. Similarly, the effect of N ,  the number of bubbles per unit cell, was also found 
to be small. The imaginary part of z for different configurations with N = 16 was about 
10% lower than those with N = 40 and 60. The results for the latter two were 
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FIGURE 5. A comparison of the numerical simulation results (circles) with the 

O@) theory for w, = 1. 

essentially the same. The real part of z remained essentially the same as N was increased 
from 16 to 60. It is interesting to note that z for a periodic array ( N  = 1) is real and 
equals approximately 0.3, roughly the same as the real part of z for random arrays. 

Figure 5 shows the comparison between the simulation results and the modified 
O@) theory (cf. (9)). We see that the two are in agreement for p = lop4. The real part 
of z is in good agreement even at /3 = 0.01, while the imaginary part is roughly twice 
the theoretical value. Thus, the higher-order interactions are significant at p = 0.01. 

It is interesting to note that for most of these configurations we have observed 
multiple solutions for r or, equivalently, z. For example, with w, = 1, p = 0.01, and 
N = 40, the two roots with one configuration of bubbles were z = 0.275-0.335i and 
z = - 0.395i, and with another configuration, they were z = 0.309 - 0.294i and 
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FIGURE 6. The function f (cf. (54)) versus v,. The zeros of this function represent the solutions for 
the effective wavenumber by z = -iv,. 

z = -0.345. This was observed for other configurations also, both for N = 16 and 60, 
and the magnitude of the roots does not seem to depend on the choice of N .  Similarly, 
the multiple roots were observed for other values of p also. The purely imaginary root 
corresponds to z = -3$i, which is the same as that given by n = 0 in (10) except for 
the sign change. (The iterative method restricted the search for z to negative imaginary 
parts.) We believe that this root is non-physical because it corresponds to using a 
radially incoming scattered wave in the expression for the conditionally averaged 
pressure field in the theory of Sangani (1991). Such scattered waves (e'"/r) do not 
decay at infinity when the imaginary part of the effective wavenumber k is negative. An 
inspection of the numerical results showed very large fluctuations (0( lo3) or greater) 
in the strengths of monopoles (Go) for these purely imaginary roots. The fluctuations 
for the other root, on the other hand, were quite small with a typical variance of O(1). 

4.3. Results,for or > 1 
We now present results for larger values of w,. In particular, it is interesting to examine 
the behaviour as w,+oo, k ,  being zero. In this limit, the boundary condition for the 
spherically symmetric part of the pressure around each bubble is the same as that 
encountered in the well-known problem of determining the effective reaction rate in a 
diffusion-controlled medium consisting of spherical sinks randomly dispersed in a 
medium. The analysis of Mattern & Felderhof (1987) for small volume fraction of sinks 
applies directly here and yields 

- z 2 = u 2 =  3/3[1+(3/3)~+0(/310gP)] ( w r + ~ , k L = 0 ) .  (53) 

Note that z is purely imaginary in this limit. The above expression is the same as that 
given by (5) with to = - 1. The results of our numerical solution verify the above 
asymptote, but we observe multiple solutions in this case also, as shown in figure 6. In 
this figure, we have plotted the quantity (cf. (44)) 

Az,) = too - F: - C [ E ~  B~~ + Grs] s*bl - y y >  e i ra (~~-~: )  (54) 

versus u, = -iz,,z, being the assumed value of z. In the iterative method, we take 

r ,  s ,  y 
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FIGURE 7. Determination of the attenuation by the direct method. The slope of the line log, A;,, versus 
v; directly yields the imaginary part of z ,  and hence the attenuation, at large frequencies for which 
the real part of z vanishes. p = 0.01, k ,  = 0, o), = 7, and N = 200. 

I#, = 1 and after solving for all the other &, for assumed value of z ,  we determineflz,). 
When z, is purely imaginary, flza) is real, and therefore z is determined from the zeros 
offlz,). As seen in figure 6,fgoes through three zeros and one pole as u, is varied from 
zero to 0.41. The first zero is close to that predicted from (53). We may add here that 
while purely imaginary roots at w,  = 1 are non-physical, they correspond to an 
exponential decay of sound intensity for larger wr, and thus they are physically 
permissible. Different roots in this case may be regarded as different eigenvalues, and 
since the smallest eigenvalue dictates the asymptotic behaviour at large distances, we 
shall present results for the smallest eigenvalue (first zero) only. 

The above results were obtained by the iterative search method. Figure 7 shows the 
strengths of monopoles (A;,) as a function of x; obtained using the direct method. 
Thus, these results correspond to the case of wave propagation through a finite region 
of bubbly liquid. The solid line represents the best linear fit, and the slope of this line 
gives 21 for the bulk of bubbly liquid. The result obtained in this manner was found to 
be in good agreement with the smallest eigenvalue determined by the iterative method. 

Figure 8 shows u as a function of frequency for /3 = 0.01. The results were obtained 
using the iterative method and by averaging over three to four configurations. We see 
that the computed results are in very good agreement with the O@) theory of Sangani 
for w,  > 2. The significant differences between the theory and simulations occur only 
in the vicinity of w, = 1. The real part of z varies from its value for w, = 1 shown in 
figure 3 to zero for w, z 1.4, in agreement with the rough estimate given in $2. Beyond 
this value, z is purely imaginary, and can be estimated using the direct method also. 

4.4. Comparison with experiments 
We now compare the theory and simulations with experimental data on sound 
attenuation. A number of investigators (Carstensen & Foldy 1947; Fox, Curly & 
Larson 1955; Silberman 1957; Kol’tsova et al. 1979; Ruggles, Scarton & Lahey 1986) 
have reported data on attenuation of sound waves. Ruggles et al. presented results up 
to /3 = 0.2, but they limited their measurements to low frequencies. Other investigators 
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FIGURE 8. A comparison of the numerical simulation results (circles) with the O(p) and O($) 
theories denoted, respectively, by the dashed and solid lines. k ,  = b* = 0 and p = 0.01. 

Frequency (kHz) 
FIGURE 9. A comparison of analytical results with expFrimental data due to Silberman (1957). The 
simulation results are denoted by filled circles, the O(p)  theory by the solid line, the O(p) theory by 
the dashed line, and the experimental data by open circles. The radius of the bubbles is 2.6 mm and 
p = 0.01. 

examined bubbly liquids at low p, and among these, the data by Silberman (1957) are 
regarded as the best as far as the uniformity of the bubbles' size is concerned. It is for 
this reason that Sangani (1991) compared his theory only with the data by Silberman. 
The highest value of p in these experiments was 0.01, and the radius of the bubbles was 
about 2.6 mm. This corresponds to a natural frequency of 1.4 kHz. The non-adiabatic 
thermal effects are important for these experimental conditions, and since we wish to 
investigate the possible effects due to finite compressibility of liquid at higher 
frequencies, we account for both of these effects in our simulations. The results are 
shown in figure 9 where the open circles represent the data by Silberman and the filled 
circles the results of numerical simulations after averaging over four different 
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configurations with N = 100. We see that, while the simulation results agree very well 
with the O(& theory, there is a considerable discrepancy between the simulations and 
experimental results. This discrepancy at higher frequency occurs in the other data 
presented by Silberman also. As mentioned earlier, Commander & Prosperetti (1989) 
have compared Foldy’s theory with the data by a number of investigators. From that 
study it can be seen that the attenuation values predicted by Foldy’s theory are 
generally higher than the experimental values at larger frequencies, and since the 
predictions from the O(@) theory are even greater than Foldy’s theory, the discrepancy 
would be observed in comparison with other data also. 

We have investigated the effect of polydispersity on the attenuation of waves in 
bubbly liquids. Thus, we took the radius of bubbles to be given by aa = 2.6(1+ e) mm 
with 5“ being a uniform random variable with a prescribed upper bound on its 
magnitude. At a frequency of 10 kHz, we found the attenuation to increase 
monotonically by about 15% as we varied the bound on lcl from 0 to 0.5. The 
experimental value reported by Silberman, on the other hand, is lower than the 
simulation results for monodispersed bubbly liquids. 

Our calculations have assumed the bubbles to be spherical, but it is well known that 
the bubbles of radius 2.6 mm rising under gravity are non-spherical. Since the O@) 
correction to Foldy’s theory arises from the consideration of the conditional-averaged 
pressure field at long distances from the bubble where the shape is not important, we 
believe that the departure from sphericity is not responsible for the discrepancy 
between experiments and theory. 

Based on Foldy’s theory, Silberman assumed the phase speed to be infinite in 
interpreting his data for w,  > 1, and this should result in some error in the 1.4-2.0 kHz 
frequency range, where we have found the phase speed to be finite. This, however, does 
not explain the discrepancy at higher frequencies. (Note that the numerical and 
experimental results are shown only for higher frequencies where this effect becomes 
unimportant.) Finally, we note that Silberman used a different procedure for 
measuring attenuation at higher frequencies, and it is possible that those measurements 
may not be accurate. 

5. Conclusions 
We have devised a method for solving the multiple scattering problem in non-dilute 

dispersions for which the effective wavelength is of the same order of magnitude as the 
size of the bubbles. The attenuation and phase speeds are shown to be finite at 
w, = 1 even in the absence of damping due to viscous, thermal or finite liquid 
compressibility effects. The pairwise interaction theory of Sangani (1991) found a 
number of resonances among pairs of bubbles (in pure liquid) to cause divergence in 
the 0(/3’) correction to Foldy’s theory. Numerical results obtained in the present study 
indicate that such resonance effects are likely to be unimportant in practice. 

Sangani (1991) has suggested that a poor agreement between theory and 
experimentation at higher frequencies may be caused by neglect of the finite 
compressibility of the liquid or the multi-bubble interactions effects, in particular, due 
to the out-of-phase mode resonance between pairs of bubbles which occur at higher 
frequencies. These, and the effect of polydispersity, are examined in the present work, 
and it is found that none of these can be responsible for the discrepancy. 

From the standpoint of comparing predictions of theory with experiments, the range 
of frequency and /3 values that are perhaps most interesting are 5 < w, < 15 and 
0.01 < /3 < 0.05 as the higher-order theory is substantially different from Foldy’s 
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theory in this range, and attenuation values are not too large to cause uncertainty in 
their measurements. Unfortunately, adequate experimental data in this range do not 
exist to conclude whether the theory as it stands needs further improvement. 

This work was supported by the Department of Energy and the National Science 
Foundation under Grants DE-FG02-90ER 14136 and CBT-8800451. The authors are 
grateful to Dr A. Lezzi for help in providing the proof presented in Appendix C and 
to Professor A. Prosperetti for valuable suggestions. 

Appendix A. Evaluation of H 

the lattice in the plane x, = 0 (cf. (22)) can be shown to be given by 
The fundamental singular solution of the Helmholtz equation with singularities on 

, h = kL/27c, 1 e-2xi(q.R+sz,) ds q*OS2+q2-h2 c 
where q is the reciprocal lattice vector, R = x, e, + x, e,, and 7 is the area of the unit 
cell. For a square lattice of spacing h, 7 = h2 and q = h-'(me, + ne,), m and n being 
integers. The summation in q in the above expression is to be carried out for all 
combinations of m and n except m = n = 0. Finally, e, and e3 are the unit vectors along 
the x,- and x,-axes, respectively. 

The above expression for H diverges when k,h > 2x, for which denominator 
vanishes for some values of q and s. This, of course, corresponds to the resonance 
behaviour of the lattice, and, as is well known, the damping due to viscous or other 
effects will be important close to this resonance. For the range of frequencies in which 
we are interested in the present study, k ,  R is small. For example, with bubbles of radii 
0.26 cm, and a frequency of 10 kHz (w = 27c x lo4 SF'), k ,  R is approximately 0.1. 
Thus, k ,  h equals 2n when h/ R or (4xN/3p)i  becomes approximately equal to 60. For 
a given /3, the resonance behaviour of the planar lattice will therefore become 
important if N is sufficiently large and render the model of artificially imposed 
periodicity in the plane transverse to the propagation invalid for describing the 
behaviour of truly random bubbly liquid. For low values of /3 (< O.Ol), this 
corresponds to a rather large N ( 2  500). Since most of the results presented here were 
obtained with N < 200, this limitation due to imposed periodicity is not significant. 

For completeness, we shall give expressions for evaluating H for all values of k, h. 
To obtain finite H ,  we shall assume that a small viscous damping is present. This 
amounts to replacing A' in (A 1) by A 2  - is, with e = pk4,/37c2p, w .  For the air-water 
system at 10 kHz, s is O(10-9). 

On integrating with respect to s, (A 1 )  reduces to 

where yq is a complex quantity defined by 
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Note that some of the yq become purely imaginary in the limit e+O whenever 
k,h > 27c. 

Equation (A 2) is useful when lxll is not small, for which it converges rapidly. For 
small JxJ we use the Ewald's technique and write 

H = I + I I + I I I ,  (A 4) 

with 
ds 'OS 27csxl e-na(sZ+qZ-A2+ie) e-2niq.R 

7c(s2+q2-h2+ie) 2 

2 "  
111 = - lo ds cos 27csx1 1 dy e-ny(s2-A2+ic), 

where a is a constant to be chosen such that the sums in I and I1 converge rapidly. The 
final result for H is, of course, independent of the choice of a. 

Performing the integration over s in (A 5) yields 

- eZns1Yg erf cos (27cq - R), (A 8) 

where erf is the error function, and yq is defined by (A 3). 

sum over two-dimensional reciprocal vectors q to that over the lattice vectors RL 

To evaluate 11, we first apply the theta transformation formula for converting the 

to yield 11 = 2 C lo" ds cos (27csx1) [ $ e-nU(sz-A2) e-nlR-Rd2/y, (A 10) 
RL 

where we have set e = 0 since I1 is regular in the limit e + 0. Performing the integrations 
over s and y, we obtain 

where rL = IR + x, el - RJ. 
Finally, (A 7) for I11 simplifies to 

+e-zniAz lerf ( - (3" - x,+ih(xa)i  

where, once again, we have set e = 0 as I11 is also regular in the limit E + 0. 
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aoa h 

0 2 4 6 6 8 10 12 14 

k ,  h k ,  h 
FIGURE 10. a,, as a function of k,h .  (a) For k, ,h c 6, a,, is essentially real and the computed values 
are shown by the solid line. The dashed curve is the asymptotic relation (A 14). (b) For higher values 
of k,h, a,, is complex due to lattice resonance effects, and real and imaginary parts are denoted, 
respectively, by solid and dashed lines. 

It is interesting to note the behaviour of H near its singularities. I1 and I11 are 
singular, respectively, at the lattice points and at x1 = 0. These correspond to the 
singularities in the differential equation for H (cf. (22)). In addition, we have 
singularities in I for certain values of k ,  h due to the resonance of the doubly periodic 
lattice. The behaviour very close to this last set of singularities depends explicitly on the 
magnitude of c .  We see that the singularity in I1 near each lattice point corresponds to 
a standing radial wave and in I11 to a standing planar wave. This standing-wave 
behaviour arises because of the imposed periodicity. 

Near r = 0, H can be expanded as 

cos ( kLr )  sin (kJxl1) + C C hkl anmjn(kL r )  PT(cos 0) cos mcp, (A 13) 
n=o m-0 + AT 

H =  
r 

where unm is a function of k ,  h and the geometry of the lattice. In particular, a,, can 
be determined by first removing the singularities from I1 and I11 and then substituting 
x = 0. The results of the computations are shown in figure 10. As k ,  h + 0, we find 

a,,,, + - 3.900 - 0.1 1 44(k, h)'. (A 14) 
The constants in (A 14) agree with those appearing in the fundamental singular 
solutions of the Stokes and Laplace equations derived earlier by Sangani & Behl 
(1989). More specifically, it is easy to show that H can be expanded for small k ,  h as 

H =  Yl-kZ,Y2+k4,Y3+ ..., 
with Ym satisfying 

4x 
V2 Y l ( x )  = ~ 8 ( x , ) - 4 x C S ( x - - R , ) ,  V2 Ym = Ymp1, m 3 2. (A 16) 

As seen in figure 10, the behaviour of a,, is considerably influenced by the resonance 
of the lattice for k ,  h > 2x, and, therefore, the imposed periodicity will strongly affect 
the behaviour of the bubbly liquid when h is very large. One would have expected that 
H-te-ikLZ/r as h+co since each lattice point would then behave as an isolated 
scatterer. The results of computations, however, indicate that this is not to be the case. 

R1, 
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Appendix B. Equations for determining the fully developed solution 
The long-range part P," in (40) and (41) can be expressed as 

el = ( - ik)" e-ikx?' + c {( - ik)r+n e-ik(s;L--zrj) + (ik)r+n y j  ik(sy'-zrj)) ~ y i  b,l e rO7 (B 1) 
r , y , j  

where a;{ = g(x;L -x;j), b;{ = 1 - a;{, and, for brevity, we have taken k = k,. g(x) is the 
Heavyside step function whose value is unity for x > 0, zero for x < 0, and one-half 
for x = 0. Now substituting (43) into (B l), using xfl = yf+ (I- 1) h, and carrying out 
summation over j using identities 

we obtain 

(ik)n+r ei(f-k) yr  eikzy' ),,.t.], (B 3) 

where A,, = g( y; - y;), and p.t. stands for the primed terms obtained by replacing Bra 
and f with Bio and r', respectively. 

The short-range part in (40), upon substituting for from (43), is given by 

N, c c ( ~ s ~ r s + ~ s ~ s ) ~ ~ m H * ( x " z - x ~ ~ ) + p . t .  (B 4) 
r ,  s . y j = I  

Since H decays exponentially, the summation over j can be extended to all integers to 
give the following approximation for the short-range part : 

where m = 1-j and the derivatives of H* are to be evaluated with respect to ya--yY. 
The approximation is valid when the bubble a1 is in the bulk of the bubbly region. 

In order that (40) permits a solution in the form given by (43), the coefficients of eikLsyz 
and e-ikLx:' in the long-range part p"," must vanish for all a, I, and n.  It can be easily 
verified that these conditions are satisfied provided that 

The coefficients of the terms multiplying eirxy' and eif's"' 1 in the equations that result 
upon substituting the expressions for P: and the short-range contributions given in 
this appendix into (40) and (42) can be set to zero to determine r, q8, &, and the 
corresponding quantities with a tilde in terms of any two unknowns, say BAo and Bib. 
Finally, these two unknowns can be determined in principle from the two equations 
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given by (B 6). Thus, we have the necessary and sufficient conditions for uniquely 
determining the solution in the bulk. The equations that result by comparing the 
coefficients of eirzT' are given by (44)-(46). 

Appendix C. Special cases 
In this appendix, we show that the results obtained by Foldy (1945) and Rubinstein 

(1985) can be derived from the equations given in $3. In Foldy's analysis the bubbles 
act as independent monopole scatterers, the interaction among pairs of bubbles and 
higher-order multipoles being negligible. Taking therefore e0 = 1, and setting all the 
higher-order multipoles to zero, yields 

Now in the limit of N + m ,  we can replace the sum in (C 1) by an integral to yield 

where y = y:-y;. In approximating the sum by integral, we have made an assumption 
that the bubbles are uniformly distributed in a cube of size h. On evaluating the 
integral, substituting for F; into (44), and neglecting the short-range interaction part 
in that equation which accounts for interaction among bubbles, we obtain 

too = 47tN/h3 r'. (C 3) 
Now substituting for too from (39), and using p = 4xNR3/3h3, we see that (C 3) reduces 
to the Foldy's result (cf. (1)) with zL = 0. 

Rubinstein (1985) examined dilute periodic arrays. His results can be obtained by 
taking N = 1 and neglecting higher-order multipoles. He obtained the leading-order 
correction to the Foldy's approximation by accounting for the interactions among the 
bubbles. Therefore retaining the short-range part in (44), we now obtain 

For the special case of zL = 0, S* is given by 
cc 

S*(O) = C. YT(lhe,>epirLh, 
Z=-m 

where YT is the regular part of the doubly periodic singular solution of Laplace 
equation (cf. (A 16)). Now (C 4)  can be recast as 

and noting that tqO is inversely proportional to R ,  we see that, to leading order, (Th)' 
is O(R/h)  or O(/3). This corresponds to Foldy's approximation. To obtain the next 
correction, it is necessary to expand only the sinusoidal function in (C 6)  for small 
T h ;  S*(O) may be evaluated by taking r = 0. This yields 
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where the summation in 1 is over all integers. Rubinstein (1985) obtained his expression 
in terms of the periodic singular solution S, for a triply periodic lattice. Comparing 
(C 7) with Rubinstein’s results, we see that the two agree provided that 

7T 
D*(O) = ST(0) - C Y ~ ( l h e , )  = -. 

3h 

To evaluate D*(O), we start with the differential equation 

obtained by subtracting the governing differential equations 
1959; Sangani & Behl 1989). Upon solving the above differential equation and 
evaluating D at x1 = 0, we verify (C 8), and thus the present analysis is in agreement 
with the analysis of Rubinstein (1985) for dilute periodic arrays. 

(C 9) 

for S,  and Y, (Hasimoto 
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